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Objective:Whether the dorsal striatum (DS)mediates cognitive control or cognitive effort per se in decision-making
is unclear given that these effects are highly correlated. As the cognitive control requirements of a neuropsycholog-
ical task intensify, cognitive effort increases proportionately. We implemented a task that disentangled cognitive
control and cognitive effort to specify the particular function DS mediates in decision-making.
Methods: Sixteen healthy young adults completed a number Stroop task with simultaneous blood-oxygenation-
level-dependent response (BOLD)measurement using functional magnetic resonance imaging. Participants select-
ed the physically larger number of a pair of single-digit integers. Discriminating smaller versus larger physical size
differences between a number pair requires greater cognitive effort, but does not require greater cognitive control.
We also investigated the effect of conflict between the physical and numerical dimensions of targets (e.g., 2 6). Se-
lections in this incongruent case are more cognitively effortful and require greater cognitive control to suppress

responding to the irrelevant dimension. Enhancing cognitive effort or cognitive control demands increases errors
and response times. Despite similar behavioural profiles, our aim was to determine whether DS mediates
cognitive control or simply indexes cognitive effort, using the same data set.
Results:As expected, behavioural interference effects occurred for both enhanced cognitive control and/or cognitive
effort conditions. Despite similar degrees of behavioural interference, DS BOLD signal only correlatedwith interfer-
ence arisingdue to increased cognitive control demands in the incongruent case. DSwasnot preferentially activated
for discriminations of smaller relative to larger physical size differences between number pairs, even when using
liberal statistical criteria. However, our incongruent and physical size effects conjointly activated regions related
to effortful processing (e.g., anterior cingulate cortex).
Interpretation: We interpret these findings as support for the increasingly accepted notion that DS mediates
cognitive control specifically and does not simply index cognitive effort per se.
© 2015 Elsevier Inc. All rights reserved.
Introduction

Cognitive control processes are required to consider multiple ideas
simultaneously, to direct attention from one stimulus dimension to an-
other, and to shift response strategies in accordancewith changes in the
environment – often requiring inhibition of more automatic or habitual
response tendencies (Botvinick et al., 2001; Cools and D’Esposito, 2011;
Liu et al., 2004; MacDonald et al., 2000). Deficits in cognitive control re-
sult in impaired decision-making in a number of neurological and
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psychiatric diseases (Beatty and Monson, 1996; Chamberlain et al.,
2006; Cools et al., 2001; Ruocco, 2005; Vélez-van-Meerbeke et al.,
2013; Verte et al., 2005). Identifying the brain regions that mediate cog-
nitive control will elucidate cognitive-behavioural profiles in disease
states, potentially suggesting treatment targets and options.

Controlling attention and flexibly selecting between options was
previously thought to be uniquely the domain of the prefrontal cortex
(Butters and Rosvold, 1968; Divac, 1972; Goldman and Rosvold, 1972;
Rosvold, 1972), but such higher-order processes have recently been
ascribed to the dorsal striatum (DS) as well (Cools and D’Esposito,
2011; Crofts et al., 2001; Hazy et al., 2006; MacDonald and Monchi,
2011). DS is defined as the bulk of the caudate and putamen, which
are input regions for a collection of subcortical nuclei known as the
basal ganglia (Humphries and Prescott, 2010; Voorn et al., 2004;
Wickens et al., 2007). DS lesions in both humans and non-human pri-
mates result in deficits in shifting attention between stimuli, especially
away from more salient ones (Benke et al., 2003; Cools et al., 2003,
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2010; Thoma et al., 2008), in flexibly altering decision-making strate-
gies or response sets (Benke et al., 2003; Cameron et al., 2010; Ell
et al., 2006; Grahn et al., 2008; Leber et al., 2008; Yehene et al., 2008),
in suppressing more automatic responses (Benke et al., 2003;
Cameron et al., 2010; MacDonald et al., 2011; White, 2009), and in
updating goals (Grahn et al., 2008; Hazy et al., 2006; Vakil et al.,
2004). Parkinson’s disease (PD) produces progressive loss of neurons
in the substantia nigra—the source of dopamine to DS. Impairments
for PD patients in switching attention away from a stimulus (Cools
et al., 2003, 2010; Hayes et al., 1998; Shook et al., 2005) or response
(Shook et al., 2005; Hood et al., 2007) to another, as well as in selecting
between alternatives when there is conflict (MacDonald et al., 2011)
also support the notion that DSmediates decisions or selections that re-
quire deliberation in the face of competing options or changing circum-
stances. Concurringwith this view, these deficits in PD are redressed by
dopamine replacement (Shook et al., 2005; Hood et al., 2007;
MacDonald et al., 2011). Finally, many neuroimaging experiments
have also shown preferential activity in DS at the time of flexible
decision-making and response selection during conflict (Grinband
et al., 2006; Monchi et al., 2001; Monchi et al., 2006; Rogers et al.,
2000; van Schouwenburg et al., 2010; Ali et al., 2010).

A generally unacknowledged problem with the conclusions about
DSdrawn from these investigations is that as cognitive control demands
of a task are increased, the cognitive effort required correspondingly in-
creases. Cognitive effort has been defined as the proportion of limited-
capacity central processing engaged (Russo and Dosher, 1983), the
number of elementary processes enacted (Bettman et al., 1990), or the
duration over which cognitive resources are expended (Christensen-
Szalanski, 1980). Cognitive effort is experimentally dissociable from
cognitive control processes. Tests of elaborative rehearsal, vigilance for
targets in single visual or auditory streams (Brand and Jolles, 1987), or
item comparisons along a single dimension or feature that vary in sim-
ilarity and, therefore, discriminatory difficulty (Moyer and Landauer,
1967), manipulate cognitive effort independent of cognitive control.
The vast majority of studies confound cognitive effort and cognitive
control without recognizing or noting this fact. Despite this, the con-
tention that DS engagement could simply index cognitive effort
(Boehler et al., 2011; Krebs et al., 2012; Schmidt et al., 2012) remains
a minority position in the literature that has not been critically tested.
Addressing this confound and more precisely defining the role of DS
in cognition was the aim of the current study.

We used a number Stroop task that allowed for independent manip-
ulation of cognitive control and cognitive effort demands. Briefly, in the
versionof the number Stroop task usedhere, a pair of single-digit integers
was displayed, and participants were asked to select the number in the
pair that was physically larger. The numbers could differ in both physical
size (i.e., the relevant dimension on which participants based their re-
sponses) and numerical value, (i.e., the irrelevant dimension that was al-
ways extraneous to enacting the correct response). When the relevant
and irrelevant dimensions were incongruent, this provided the means
for investigating cognitive control processes. For example, if the physical-
ly larger number in a pair is also numerically smaller (e.g., 2 6), a conflict
exists between the relevant and irrelevant dimensionswith respect to the
concept of magnitude. In this example, the participant must resolve this
conflict by directing attention to the relevant dimension, where ‘2’ is
the physically larger number in the pair, while ignoring the irrelevant di-
mension in which ‘2’ is the numerically smaller number. Trials with num-
ber pairs that differ in physical size, but not numerical magnitude,
constituted our control condition (e.g., 2 2). The congruent case arose
when the relevant and irrelevant dimensions agreed (e.g., 2 6).
Responding is often faster and less error-prone during congruent trials
compared to incongruent or control trials (Macleod, 1991). Response
interference was calculated as the response times (RTs) and error rates
in the incongruent condition minus those in the control and congruent
conditions. Further, DS activity—assessed using functionalmagnetic reso-
nance imaging (fMRI) for incongruent compared to control or congruent
trials—was contrasted to determine whether DS activity is increased in
the incongruent case—where cognitive control as well as cognitive effort
demands are greatest (MacLeod, 1991).

Varying the magnitude of the physical size difference between
number pairs on the relevant dimension creates the condition for inves-
tigating the potential role of DS in cognitive effort. It has been shown
previously that longer RTs and higher error rates result when selecting
between integers that are closer versus more distant in physical size
(Cohen Kadosh et al., 2005; Kaufmann et al., 2005). Similarly, RTs and
error rates are increased for discriminations of numerical magnitude
when number pairs are numerically closer (e.g., 1 2) relative to more
distant (e.g., 1 8) along the number continuum (Moyer and Landauer,
1967). Decreasing the physical size differences of number pairs
increases the similarity and, therefore, the difficulty or cognitive effort
required to discern which is larger. Smaller versus larger differences be-
tween pairs in this comparison task do not differ systematically in the
need to shift attention away from salient but irrelevant stimuli or to sup-
press more automatic or habitual responses (i.e., cognitive control;
Botvinick et al., 2001; Cools and D’Esposito, 2011; Liu et al., 2004;
MacDonald et al., 2000).

From a behavioural perspective, we expected longer RTs during trials
with high cognitive control demands (i.e., the incongruent condition) as
well as during trials with high cognitive effort demands (i.e., number
pairswith smaller physical size differences). However, if DSmediates cog-
nitive control specifically, DS blood-oxygenation-level-dependent
(BOLD) signal should be greater during incongruent relative to control
and/or congruent trials (i.e., Stroop interference), but not for trials with
smaller relative to larger physical size differences between number pairs
(i.e., interference due to physical size difference). Additionally, a negative
correlation betweenDSBOLD signal and Stroop interference scoreswould
indicate a role for DS in cognitive control. Alternatively, if DS merely in-
dexes the cognitive effort required to make decisions, increased DS
BOLD signal should correlate positively with RTs during trials that take
longer to resolve (i.e., Stroop interference as well as interference due to
physical size difference). In this way, we have devised a means for disso-
ciating the role of DS in cognitive control and cognitive effort within the
same task, using the same data.

Materials and methods

Participants

Sixteen healthy individuals (8 males, 8 females; mean age 23 years;
range 19–27) participated in this experiment. Participants were all
healthy, right-handed, and each provided written, informed consent
according to the Declaration of Helsinki (1991). All participants had
completed at least 12 years of education (range 14–21 years). A small
monetary compensation was provided to each participant. This project
was approved by the Health Sciences Research Ethics Board of the
University of Western Ontario.

Stimuli and design

In this study, participants completed a number Stroop task with
simultaneous measurement of regional BOLD activity using fMRI.
During each trial, two numbers, fromamong the set: 1, 2, 3, 7, 8, or 9, ap-
peared side-by-side, each in Arial font size 40, 55, 70, or 85. Participants
were asked to select—as quickly yet accurately as possible—the number
that was physically larger in the pair.

A single block of 132 randomly ordered trials that included 48
congruent, 48 incongruent, and 36 control trials was performed by
each participant (Fig. 1). In the incongruent condition, physical size
and numerical magnitudewere inconsistent (e.g., 9 1). In the congruent
condition, physical size and numerical value were consistent (e.g., 9 1).
In the control condition, the numbers in the pair differed only in physi-
cal size (e.g., 9 9).



Fig. 1.Number Stroop trial types used in this experiment. Participantswere asked to select
the physically larger number of the pair. Trials were either: incongruent, in which physi-
cally larger numbers are numerically smaller; congruent,where physically larger numbers
are numerically larger; or control, inwhich numbers differ in physical size, but not numer-
ical magnitude. Trial congruency was used to manipulate cognitive control requirements.
Physical size differences between number pairs were used to manipulate cognitive effort
requirements. Correct responses are shownhere in red, but all numberswere black during
the experiment.

Fig. 2. The progression of a number Stroop trial. a) Trials beganwith a 500ms fixation pe-
riod during which a cross was displayed in the middle of the screen to draw the partici-
pant’s attention. b) A 250 ms blank screen was then shown. c) The display period began,
lasting until the participant logged his/her response via button press. d) An inter-trial in-
terval of variable duration (525–7000 ms; mean = 2500 ms) occurred.
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Physical size and numerical magnitude differences between pairs
also varied systematically, with possible differences of 15, 30, or 45
font points on the relevant physical size dimension and of 1, 2, 6, or 7
on the to-be-ignored, irrelevant numerical magnitude dimension.
Physical size was the relevant dimension because participants were
instructed to select the physically larger number of the pair. Numerical
magnitude was the irrelevant/distracting dimension because decisions
were never based on this information. With respect to the relevant
dimension, trials were classified as “close” if the font size difference
was 15 points (e.g., font size 40 vs. font size 55) or “far” if the font size
difference was 45 points (e.g., font size 40 vs. font size 85). To balance
our design and add greater variability to physical size differences
between number pairs, trials with an additional, intermediate physical
size difference of 30 font points were included in the experiment, but
were not considered in our analyses. For numerical magnitude,
differences of 1 or 2 between the number pair were classified as
“close”, whereas differences of 6 or 7 were classified as “far”. The phys-
ical and numerical difference variables were orthogonal and fully
crossed with the congruency variable, allowing for dissociation of
their effects. There were 44 trials with a font size difference of 15 points
(i.e., close trials), 44 trials with a font size difference of 30 points, and 44
trialswith a font size difference of 45 points (i.e., far trials). Additionally,
there were 66 trials in which the difference between number pairs on
the irrelevant, numerical magnitude dimension was 1 or 2 (i.e.,
numerically "close") and 66 trials that the difference between num-
ber pairs on the irrelevant numerical magnitude dimension was 6 or
7 (i.e., numerically "far"). The close-far variable on the relevant and
irrelevant dimensions was fully balanced, such that there were an
equal number of close relevant-close irrelevant, close relevant-far ir-
relevant, far relevant-close irrelevant, and far relevant-far irrelevant
pairings.
Procedure

Trials were presented on a projection screen inside an MRI ma-
chine. The progression of a number Stroop trial is shown in Fig. 2. Tri-
als began with a 500 millisecond (ms) fixation period, during which
a small cross appeared in the center of the screen to capture the at-
tention of the participant. A 250 ms blank screen followed this fixa-
tion period. Afterward, a number pair was displayed on the
screen – one number on the left and one number on the right. This
display period lasted until the participant logged their response
with their right hand using a button box. Pressing the button under
their right index finger signified a selection of the number on the
left side of the screen and the button under their middle finger signi-
fied a selection of the number on the right side of the screen. Once a
selection was made, an inter-trial interval of variable length
(525–7000 ms; mean = 2500 ms) occurred before the presentation
of the subsequent fixation period.
Behavioural analyses

All analyses were completed using Systat version 13.1 (Systat
Software, San Jose, California). RTs were defined as the period from
onset of a number pair until the participant made a response using the
button box. Two 3 × 2 analyses of variance (ANOVAs) were performed
with congruency (incongruent vs. congruent vs. control) and physical
size differences (close vs. far) as within-subject variables to examine
the effect of these variables on RTs in one ANOVA, and error rates in
the other. Post-hoc tests were performed to understand any main
effects. Using two 2 × 2 ANOVAs, with congruency (incongruent vs.
congruent) and numerical magnitude differences (close vs. far) as
within-subject variables, we further investigated whether the numeri-
cal magnitude difference between number pairs on the irrelevant
dimension affected participant RTs, error rates, or interacted with the
congruency effect. The alpha level was set at 0.05 for all comparisons.

Imaging acquisition

Functional MRI data were collected in a 3 Tesla Siemens Magnetom
Trio with Total Imaging Matrix MRI at Robarts Research Institute at the
University ofWestern Ontario. A scout imagewas obtained for position-
ing the participant and T1 for anatomical location. There were two runs
of T2*-weighted functional acquisitions. The run consisted of one block
of 132 trials. All runs lasted an average of 12 minutes with one whole
brain image consisting of 43, 2.5-mm-thick slices taken every 2.5 s.
The field of view was oriented along the anterior and posterior
commissure with a matrix of 88 × 88 pixels, and an isotropic voxel
size of 2.5 × 2.5 × 2.5 mm3. The echo time was 30 ms, and the flip
angle was 90°.

fMRI data analyses

Statistical Parametric Mapping version 5 (SPM5; Wellcome Depart-
ment of Imaging Neuroscience, London, United Kingdom) and Matrix
Laboratory (MATLAB; MathWorks, Inc., Natick, Massachusetts, United
States) were used to complete fMRI analysis. Images were slice-time
corrected, reoriented for participant motion, spatially normalized to
the standard Montreal Neurological Institute (MNI) template, and
smoothed with an 8 mm full-width, half-maximum Gaussian kernel.
Brain regions mentioned in this paper were defined using the
Harvard-Oxford Subcortical and Cortical Atlases in the FMRIB Software
Library version 5.0 (FSL v5.0; Analysis Group, FMRIB, Oxford, United
Kingdom). All x, y, z values are reported in MNI space.

Each participant’s data were modeled using fixed effects analyses in
SPM5. Predictor functions were formed by convolving onsets and
durations of psychological events of interest with the canonical hemo-
dynamic response function. Trials were organized by both congruency
(i.e., congruent, incongruent, or control) and physical size differences



Fig. 3. Stroop interference and facilitation scores. Interference scores are (mean incongru-
ent RT – mean congruent RT, and mean incongruent RT – mean control RT). Facilitation
score is (mean congruent RT – mean control RT). Error bars represent ± SEM. Close and
far trials of each congruency type (collapsed across numerical magnitude difference)
were used. One-sample t-tests (theoreticalmean=0)were completed for each bar. Triple
asterisks denote significantly differentmean RTs at p b 0.001. A single asterisk denotes sig-
nificantly different mean RTs at p b 0.05. Cong, congruent; Ctrl, control; Incong,
incongruent.
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(i.e., close or far) between the number pairs displayed during trials.
Again, these effects were orthogonal and fully crossed so each variable
could be investigated by collapsing across the other variable. A 3 × 2
fully factorial ANOVA, with congruency (congruent vs. incongruent vs.
control) and physical size difference (close vs. far) as within-subject
variables was performed on BOLD signal. To match our behavioural
analyses, pairwise effects were investigated to better understand any
main effects.

In addition, to determine whether DS is differentially implicated in
cognitive control processes or engaged generally in conditions with
high cognitive effort demands, conjunction analyses between Stroop
interference and close-far physical distance contrasts were performed
at the whole-brain level. Disjunction analyses were also completed to
demonstrate that DS is significantly more active in our incongruent –
congruent contrast than our close – far contrast. We followed
these analyses with region of interest (ROI) analyses conducted using
peak MNI coordinates in DS (±16, −10, 18) taken from a Stroop
interference study by Peterson et al. (1999). In addition to the DS ROIs
intended to distinguish engagement in cognitive control versus
cognitively effortful processing, we selected an ROI in the anterior
cingulate cortex (ACC; ±11, 1, 50; Ansari et al., 2006). An ACC ROI
was used because this brain region is frequently preferentially engaged
in tasks that demand significant attention or sustained cognitive effort
(Shenhav et al., 2013; Ansari et al., 2006; Kaufmann et al., 2005;
MacDonald et al., 2014). Therefore, we supposed that this region
might be commonly activated for interference and physical size
comparison contrasts. ROIs used in our analyses were 5 mm spheres
drawn around the coordinates listed in the studies cited above. Finally,
brain-behaviour correlations of BOLD signal with our interference
scores due to congruency and physical distance were performed.

Results

Behavioural results

Mean RTs and error rates sorted by congruency, physical size
differences, and numerical magnitude differences are presented in
Table 1. Interference (incongruent – control, incongruent – congruent)
Table 1
Mean RTs (ms± SEM) and error rates (%± SEM) for trials sorted by congruency, physical
size difference, and numerical magnitude difference.

Congruency Physical size Numerical
magnitude

RT (ms ± SEM) Error rates
(% ± SEM)

Incongruent – – 477.75 ± 19.01 7.55 ± 1.45
Close – 553.79 ± 22.23 11.33 ± 3.34
Intermediate – 464.17 ± 18.12 3.52 ± 0.99
Far – 440.56 ± 18.92 3.52 ± 1.61
– Close 468.44 ± 16.79 5.73 ± 5.67
– Far 484.16 ± 23.91 8.07 ± 8.40

Congruent – – 423.24 ± 16.90 4.56 ± 0.39
Close – 450.05 ± 21.25 3.52 ± 0.98
Intermediate – 424.80 ± 17.98 3.13 ± 0.81
Far – 406.17 ± 13.76 3.13 ± 0.81
– Close 423.61 ± 15.96 3.39 ± 0.57
– Far 424.92 ± 17.53 3.39 ± 0.57

Control – – 436.69 ± 18.85 3.65 ± 0.42
Close – 477.58 ± 27.68 2.60 ± 1.00
Intermediate – 431.31 ± 15.11 2.60 ± 1.00
Far – 409.60 ± 15.94 1.56 ± 0.84

– Close – 487.64 ± 22.10 7.10 ± 1.19
– Intermediate – 440.40 ± 17.70 3.84 ± 0.45
– Far – 417.65 ± 15.84 3.69 ± 0.80

Horizontal dashes indicate that trials used to determine RTs and error rates in that row are
collapsed across the columnvariable.With respect to thephysical size variable, “Close” de-
notes a font size difference of 15 points, “Intermediate” denotes a difference of 30 points,
and “Far” denotes a difference of 45 points. “Intermediate” physical size trials were not
used in our subsequent analyses, but are listed here for the sake of completeness.With re-
spect to the numerical magnitude variable, “Close” denotes numerical magnitude differ-
ences of 1 or 2 and “Far” denotes numerical magnitude differences of 6 or 7.
and facilitation (congruent – control) effects are shown in Fig. 3. One-
sample t-tests (theoretical mean = 0) indicate significant response
slowing in our interference (incongruent – control, t(15) = 6.319,
p b 0.001; incongruent – congruent, t(15) = 8.525, p b 0.001) contrasts
and faster responding in our facilitation (congruent – control, t(15) =
2.167, p b 0.05) contrast (Fig. 3). An additional one-sample t-test
(theoretical mean = 0) indicates significant response slowing (close –

far, t(15) = 4.047, p b 0.005) during trials with close physical size
differences compared to trials with far physical size differences
(Fig. 4). A one-way ANOVA found no differences in the magnitude of
response slowing between our interference (incongruent – control,
incongruent – congruent) and close – far contrasts (F(2, 45) = 0.5157,
MSE=1152, p=0.60). This indicates that an equal amount of cognitive
effort was required to respond correctly during incongruent trials and
trials with close physical size differences.
Fig. 4. Response slowing due to physical size differences. Response slowing was
determined by subtracting mean RT during far trials from mean RT during close trials.
Error bars represent ± SEM. Close and far trials were collapsed across congruency and
numerical magnitude difference. A one-sample t-test (theoretical mean = 0) indicated
significant response slowing at p b 0.005.



Table 2
Regions significant for main effect of congruency.

Anatomical Region Coordinates
(x, y, z)

F
value

Cluster
size

R dorsal putamen 27, −7, 1 12.35 3
R postcentral gyrus 66, −7, 13 22.62 764

36, −31, 40 16.55 21
45, −37, 61 14.76 42
57, −19, 52 10.84 1

L superior temporal gyrus −60, −4, −1 21.33 72
L postcentral gyrus −33, −34, 46 18.96 130
L cerebellum −18, −58,

−17
18.65 31

−9, −31, −23 15.55 14
R inferior temporal gyrus 60, −58, −11 18.58 57

48, −22, −23 11.91 1
45, −25, −20 11.10 1
48, −55, −20 10.90 1

R hippocampus 21, −25, −11 17.37 70
R frontal orbital cortex 18, 32, −17 17.33 8
R amygdala 18, 2, −20 15.96 36
L planum temporale −51, −31, 7 14.83 62
L juxtapositional lobule cortex (ext. into
anterior cingulate cortex)

−12, 5, 46 14.36 9

L/R occipital pole 0, −91, 22 14.36 15
L insular cortex −39, 2, −17 13.86 6

−33, −25, 16 10.99 1
L superior parietal lobule −18, −49, 55 13.58 6
L posterior cingulate gyrus −15, −25, 34 13.52 6
R planum temporale 51, −28, 13 13.19 7
R lateral occipital cortex 24, −67, 46 13.03 9
L hippocampus −21, −19,

−11
12.97 4

R frontal operculum cortex 33, 14, 16 12.90 6
30, 29, 10 11.97 4

R dorsolateral prefrontal cortex 39, 44, 28 12.51 19
R orbitofrontal cortex 30, 38, −17 11.80 2
R insular cortex 39, 5, −17 11.74 2
R posterior cingulate gyrus 15, −31, 37 11.68 8
R thalamus 12, −19, 4 11.33 2
R white matter 21, 5, 25 11.06 1
L precentral gyrus −57, −4, 25 11.05 2
L temporal fusiform cortex −42, −28,

−17
10.85 1

All F values listed abovewere found at p b 0.05 with FDR correction. Coordinates are listed
in MNI space. ext, extending; L, left; R, right.
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We ran a 3 × 2 ANOVA on RTs, with congruency (incongruent vs.
congruent vs. control) and physical size difference between number
pairs (close vs. far) as within-subject variables to determine the effect
of these factors on RTs. Significant main effects of congruency (F(2,
90) = 6.203, MSE = 41589, p b 0.005) and of physical size difference
(F(1 90) = 20.33, MSE = 136310, p b 0.001) were observed. There was
no significant interaction between congruency and physical size (F(2,
90) = 1.442, MSE = 9670, p = 0.24). Bonferroni-corrected post-hoc
t-tests revealed that participants had longer RTs during incongruent
trials than during congruent (t(90) = 3.350, p b 0.005) or control
(t(90) = 2.618, p b 0.05) trials. However, mean RTs during congruent
and control trials did not differ significantly (t(90) = 0.73, p N 0.99).

We performed an analogous 3 × 2 ANOVA on error rates, with
congruency (incongruent vs. congruent vs. control) and physical size
differences between number pairs (close vs. far) as within-subject var-
iables. Main effects of congruency (F(2, 90) = 5.496, MSE = 249.9,
p b 0.01) and physical size difference (F(1, 90) = 5.013, MSE = 227.9,
p b 0.05)were observed. No significant interaction between congruency
and physical size difference (F(2, 90) = 2.972, MSE= 135.1, p = 0.056)
was seen on error rates. Bonferroni-corrected post-hoc t-tests revealed
that participants made more errors during incongruent trials than
during congruent (t(90) = 2.433, p b 0.05) or control (t(90) = 3.167,
p = 0.01) trials, but error rates for control and congruent trials did not
differ (t(90) = 0.7338, p N 0.99). Further, participants made more errors
during close incongruent trials compared to close congruent (t(90) =
3.277, p b 0.005) or close control (t(90) = 3.659, p b 0.005) trials, but
error rates for close congruent and close control trials did not differ
(t(90) = 0.3823, p N 0.99). There were no differences in error rates for
far trials crossing the congruency variable.

We next examined whether the numerical magnitude difference
between number pairs (i.e., the irrelevant dimension) affected the size
of the interference or facilitation effects using a 2 × 2 ANOVA, with
congruency (incongruent vs. congruent) and numerical magnitude
difference between number pairs (close vs. far) as within-subject
factors. A main effect of congruency (F(1, 60) = 9.308, MSE = 63905,
p b 0.005), but not of numerical magnitude (F(1, 60) = 0.5071, MSE =
3482, p=0.48)was observed.Most important, there was no significant
interaction between congruency and numerical magnitude difference
(F(1, 60) = 0.0754, MSE = 517.7, p = 0.78), suggesting that the size of
interference and facilitation effects was not significantly affected by
the numerical magnitude difference between number pairs on the irrel-
evant dimension.

A similar 2 × 2 ANOVA, with congruency (incongruent vs.
congruent) and numerical magnitude difference (i.e., the irrelevant
dimension) between number pairs (close vs. far) as within-subject
factors was used to investigate the effects of both factors on error
rates. A main effect of congruency (F(1, 60) = 12.86, MSE = 549.3,
p b 0.001), but not of numerical magnitude difference (F(1, 60) =
0.0572,MSE=2.441, p=0.81) was observed. There was no significant
interaction between congruency and numerical magnitude difference
(F(1, 60) = 0.2286, MSE = 9.766, p = 0.63), suggesting that error rate
was not significantly affected by the difference between number pairs
on the irrelevant dimension.

Imaging results

We examined BOLD signal in a 3 × 2 fully factorial model, with
congruency (incongruent vs. congruent vs. control) and physical size
differences (close vs. far) as within-subject variables. As shown in
Table 2, right dorsal putamen (peak coordinates: 27, -7, 1; F(1, 90) =
12.35; cluster size = 3) was significant for main effect of congruency
at p b 0.05 with false discovery rate (FDR) correction. All regions
differentially modulated by congruency are listed in Table 2.

To mirror our behavioural analyses, we investigated brain regions
that were preferentially activated by interference (incongruent –

control, incongruent – congruent) and the reverse contrasts (control –
incongruent, congruent – incongruent), as well as contrasts of congru-
ent and control conditions. Table 3 presents brain regions that were
significant at p b 0.05 with FDR correction for these pairwise compari-
sons. In the incongruent – congruent contrast, activations in right dorsal
caudate (peak coordinates: 21, 5, 25; t = 3.33; cluster size = 54), left
dorsal caudate (peak coordinates: -18, -4, 19; t = 2.85; cluster size =
2), and left dorsal putamen (peak coordinates: -30, -1, 10; t = 2.73;
cluster size = 2) all survived FDR correction. The significant activations
for these contrasts are shown in Fig. 5. In addition, there were right
dorsal caudate (peak coordinates: 27, -7, 1; t = 3.51) and left dorsal
caudate (peak coordinates: −18, −22, 19; t = 3.10) peaks found as
secondary activations within large clusters originating in the right
postcentral gyrus and left superior temporal gyrus, respectively. Neither
dorsal caudate nor putamen were significantly more active in the
remaining pairwise comparisons (i.e., incongruent – control; control –
incongruent; congruent – incongruent; congruent – control; control –
congruent). However, given that striatum was predicted in our incon-
gruent – control contrast, and because a region of DS was significant
at p b 0.05 with FDR correction in our omnibus test of congruency, we
further explored striatum in the incongruent – control contrast using
p b 0.005 uncorrected formultiple comparisonswith a cluster size cutoff
of 10 contiguous voxels. BOLD signal in right dorsal putamen (peak
coordinates 36, −1, 4; t = 3.42; cluster size = 48), and left dorsal
putamen (peak coordinates −30, −1, 13; t = 3.11; cluster size = 13)
were significant at this more liberal threshold for the incongruent –



Table 3
Significant activations in pairwise comparisons of incongruent, congruent, and control trials.

Contrast Anatomical Region Coordinates (x, y, z) t-stat Cluster size

incongruent – congruent R dorsal caudate 21, 5, 25 3.33 54
L dorsal caudate −18, −4, 19 2.85 2
L dorsal putamen −30, −1, 10 2.73 2
R postcentral gyrus 66, −7, 13 4.76 2368

(R dorsal putamen) (27, −7, 1) (3.51) *
L superior temporal gyrus −60, −4, 1 4.62 596

(L dorsal caudate) (−18, −22, 19) (3.10) *
L postcentral gyrus −33, −34, 46 4.35 554
L cerebellum −18, −58, −17 4.32 134
R inferior temporal gyrus 60, −58, −11 4.31 157

48, −22, −23 3.45 14
R parahippocampal gyrus 21, −25, −11 4.17 448
R frontal orbital cortex 18, 32, −17 4.16 42
L juxtapositional lobule cortex (ext. into anterior cingulate cortex) −12, 5, 46 3.79 107
L/R occipital pole 0, −91, 22 3.79 68
L insular cortex −39, 2, −17 3.72 18
L hippocampus −21, −19, −11 3.60 35
R dorsolateral prefrontal cortex 39, 44, 28 3.54 126
R frontal operculum cortex 30, 29, 10 3.46 20
R thalamus 12, −19, 4 3.37 23

21, −31, 7 2.78 1
L temporal fusiform cortex −42, −28, −17 3.29 14

39, −13, −23 2.85 3
R posterior cingulate gyrus 3, −43, 4 3.13 13

3, −34, 28 2.82 4
L middle frontal gyrus −39, 38, 34 3.12 12
L supramarginal gyrus −36, −49, 19 3.07 8
L lateral occipital cortex −54, −67, −11 3.06 10
R ventromedial prefrontal cortex 48, 50, 13 3.02 20
R temporal occipital fusiform cortex 24, −61, −14 3.02 39
L/R lingual gyrus 0, −70, 7 3.01 14
R occipital fusiform gyrus 30, −82, −20 3.01 2
L occipital fusiform gyrus −36, −76, −23 3.00 10
L thalamus −18, −31, 4 2.98 10
L lingual gyrus −15, −46, −5 2.96 25
L inferior temporal gyrus −45, −52, −5 2.95 3
L subcallosal cortex −12, 17, −11 2.79 3
R intracalcarine cortex 24, −61, 10 2.78 11
R inferior frontal gyrus 45, 32, 7 2.78 2
R lingual gyrus 12, −88, −11 2.73 1
L cerebellum −24, −40, −29 2.72 1
R precentral gyrus 21, −25, 58 2.71 1
R precuneus 3, −49, 61 2.67 2

congruent – incongruent – – – –

incongruent – control – – – –

control – incongruent – – – –

congruent – control – – – –

control – congruent L cuneus −6, −85, 37 5.28 2425
R supramarginal gyrus 69, −25, 31 4.58 2668
L superior temporal gyrus −63, −7, −2 4.56 238
R frontal orbital cortex 18, 32, −17 4.37 42
R thalamus 18, −19, 7 3.34 66
L insular cortex −30, −25, 16 3.21 38
L cerebellum −18, −28, −32 3.18 20
L frontal orbital cortex −24, 8, −23 3.14 8
R orbitofrontal cortex 21, 59, −5 3.10 12
R dorsolateral prefrontal cortex 27, 47, 40 3.07 15
R inferior frontal gyrus 33, 32, 10 3.03 3
L dorsolateral prefrontal cortex −30, 44, 37 2.93 20
L temporal fusiform cortex −30, −31, −23 2.88 7
R hippocampus 18, −22, −11 2.87 3
L temporal pole −51, 14, −20 2.85 2
L frontal medial cortex −3, 38, −14 2.85 10
R middle temporal gyrus 63, −37, −11 2.85 4
R inferior frontal gyrus 48, 29, 10 2.84 3
L amygdala −21, −4, −17 2.82 5
L postcentral gyrus −42, −28, 40 2.82 4
R middle temporal gyrus 63, −52, −11 2.72 2
R ventrolateral prefrontal cortex 42, 50, 13 2.63 2
L hippocampus −27, −7, −23 2.62 1
R orbitofrontal cortex 30, 38, −17 2.61 1

All t values listed abovewere found at p b 0.05with FDR correction. Secondary DS activations are listed in parentheses below their primary activations. Coordinates are listed inMNI space.
ext, extending; L, left; R, right.
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Fig. 5. Axial slices showing significant activations for our BOLD signal analyses. Activations seen in contrasts of interest are shown in vertical columns for z = 1, 10, and 19. Significant
activations (p b 0.05 with FDR correction) in DS are circled in green.

Table 4
Regions significant for main effect of physical size difference.

Anatomical Region Coordinates
(x, y, z)

F
value

Cluster
size

R middle temporal gyrus 54, −55, 11 36.06 1518
L inferior temporal gyrus −45, −55, −8 29.68 447
R precentral gyrus 45, 8, 25 29.64 353
L precentral gyrus −45, 2, 28 29.41 194
R ventrolateral prefrontal cortex 48, 38, 16 22.91 171
L lateral occipital cortex −45, −76, 34 21.25 89
L superior parietal lobule −27, −55, 49 17.98 272
L cerebellum −3, −73, −23 17.70 41
L posterior cingulate gyrus −6, −37, 43 15.94 26
L juxtapositional lobule cortex (ext. into
anterior cingulate cortex)

−15, 2, 43 15.22 14

R frontal medial cortex 3, 32, −17 12.54 108
R orbitofrontal cortex 21, 47, −14 11.60 4
R occipital pole 18, −91, 4 11.57 8
R supramarginal gyrus 69, −22, 28 11.21 4
R inferior frontal gyrus 57, 17, 7 11.03 12
R precuneus 9, −55, 10 10.99 13
L precuneus −12, −58, 16 10.68 13
L brain stem −9, −22, −32 10.54 1
L middle frontal gyrus −45, 35, 19 10.25 5
L inferior frontal gyrus −30, 32, 16 10.02 4
L paracingulate gyrus −6, 53, −2 9.93 5
L superior temporal gyrus −63, −10, 1 9.28 2

All F values listed abovewere found at p b 0.05 with FDR correction. Coordinates are listed
in MNI space. ext, entending; L, left; R, right.
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control contrast. No DS activations were seen at this threshold in the
control – incongruent contrast.

In our 3 × 2 ANOVA, we found no regions in DS that were significant
formain effect of physical size difference at p b 0.05with FDR correction
for multiple comparisons. All regions significantly modulated by physi-
cal size difference are shown in Table 4. To be entirely sure that DS was
not implicated in this effect, we set a very liberal threshold of p b 0.05
uncorrected for multiple comparisons, with a cluster size cutoff of 10
contiguous voxels. We again found no significant voxels within DS.
We then investigated pairwise contrasts of close – far and far – close
at p b 0.05 with FDR correction (Table 5). There were no significant
activations in DS in either contrast. Using a very liberal threshold of
p b 0.05 uncorrected formultiple comparisons, with a cluster-size cutoff
of 10 contiguous voxels, there were no significant activations in DS. A
single non-significant activation in DS was noted in right dorsal
putamen (peak coordinates: 30, 5, 10; t = 1.70; cluster size = 4) that
disappeared at a threshold of p b 0.01 uncorrected for multiple
comparisons.

In the same 3 × 2 ANOVAwith a statistical threshold of p b 0.05with
FDR correction, clusters extending into ACC – originating at the border
of the left juxtapositional lobule –were observed in ourmain effect con-
trasts for both congruency (peak coordinates−12, 5, 46; F(1, 90)=14.36;
cluster size = 9) and physical size difference (peak coordinates −15, 2,
43; F(1, 90) = 15.22; cluster size= 14). In subsequent pairwise compar-
isons, both ACC activations were also seen in our incongruent – congru-
ent (peak coordinates −12, 5, 46; t = 3.79; cluster size = 107) and
close – far (peak coordinates−15, 2, 43; t=3.90; cluster size=66) con-
trasts. As well, left supramarginal gyrus (peak coordinates −36, −49,
19; t = 3.07; cluster size = 8) was significant in our incongruent –
congruent contrast. Right supramarginal gyrus was significant in
both the main effect of physical size difference (peak coordinates
69, -22, 28; F(1, 90) = 11.21; cluster size = 4) and pairwise



Table 5
Significant activations for pairwise comparisons of close and far trials.

Contrast Anatomical Region Coordinates
(x, y, z)

t-stat Cluster
size

close –

far
R inferior temporal gyrus 54, −55, −11 6.01 1862
L inferior temporal gyrus −45, −55, −8 5.45 729
R precentral gyrus 45, 8, 25 5.44 523
L precentral gyrus −45, 2, 28 5.42 264

−33, −4, 43 2.82 6
R ventrolateral prefrontal cortex 48, 38, 16 4.79 217
L superior parietal lobule −27, −55, 49 4.24 470
L cerebellum −3, −73, −23 4.21 81
L juxtapositional lobule cortex
(ext. into ACC)

−15, 2, 43 3.90 66

R orbitofrontal cortex 21, 47, −14 3.41 15
36, 53, −14 2.98 3
36, 62, 1 2.75 1
36, 44, −17 2.73 1

R supramarginal gyrus 69, −22, 28 3.35 11
L brain stem −9, −22, −32 3.25 2
L middle frontal gyrus −45, 35, 19 3.20 37
L superior temporal gyrus −63, −10, 1 3.05 11
L intracalcarine cortex −21, −76, 7 2.94 19
L orbitofrontal cortex −45, 47, −14 2.92 5
R postcentral gyrus 6, −37, 61 2.88 4
L temporal occipital fusiform
cortex

−39, −49,
−26

2.85 2

R superior temporal gyrus 60, −22, −2 2.85 9
L temporal fusiform cortex −36, −4, −29 2.81 1
R occipital pole 6, −91, 25 2.81 1
L brain stem −12, −19,

−29
2.81 1

R planum polare 39, −1, −20 2.79 1
R lingual gyrus 12, −70, −14 2.77 1

27, −58, 4 2.76 2
R white matter 15, 2, 55 2.75 1

21, 8, 25 2.74 2
24, −13, 10 2.73 1

R lateral ventricle 15, 26, 7 2.72 2
R thalamus 18, −31, 1 2.71 1
L lateral occipital cortex −24, −70, 28 2.70 1

−27, −73, 25 2.68 1
L middle temporal gyrus −66, −25, −5 2.67 1

far –

close
– – – –

All t values listed abovewere found at p b 0.05with FDR correction. Coordinates are listed
in MNI space. ext, extending; L, left; R, right.

Table 6
Conjunction analyses of our interference and close – far contrasts.

Conjunction Anatomical Region Coordinates
(x, y, z)

t-stat Cluster
size

incongruent –
congruent ∩
close – far

R inferior temporal gyrus 60, −58, −11 4.31 144
R postcentral gyrus 36, −31, 37 4.06 406
L juxtapositional lobule
cortex (ext. into anterior
cingulate cortex)

−12, 2, 43 3.43 9

R precentral gyrus 48, 2, 25 3.42 30
R supramarginal gyrus 69, −22, 28 3.35 15
L postcentral gyrus −36, −37, 43 3.21 80
L supramarginal gyrus −51, −31, 49 3.11 26
R inferior frontal gyrus 60, 17, 7 3.07 7
L lateral occipital cortex −54, −67, −11 3.06 7
L superior temporal gyrus −63, −10, 1 3.05 14
R ventrolateral prefrontal
cortex

48, 50, 13 3.02 14

R superior parietal lobule 24, −49, 55 3.02 15
R lateral occipital cortex 36, −76, −23 3.00 10
R dorsolateral prefrontal
cortex

42, 41, 25 2.75 5

incongruent –
control ∩
close – far

R inferior temporal gyrus 54, −58, −11 4.00 91
R supramarginal gyrus 42, −34, 31 3.35 114
R angular gyrus 45, −49, 58 3.32 55
R lateral occipital cortex 48, −76, −11 3.22 13
L superior parietal lobule −39, −40, 46 3.17 52
L supramarginal gyrus −51, −31, 49 2.77 7

All t values listed above were found at p b 0.005 uncorrected for multiple comparisons.
Activations with cluster size b 5 are not listed. Coordinates are listed in MNI space. ext,
extending; L, left; R, right.

Fig. 6.Axial slices showing significant activations fromour conjunction analysis. No shared
voxels were present in DS. Shared voxels seen within ACC are circled in green at z = 43
(p b 0.005 uncorrected for multiple comparisons).
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comparison of close – far trials (peak coordinates 69, −22, 28; t =
3.35; cluster size = 11).

Next, we performed conjunction analyses at the whole-brain level
between our congruency interference (i.e., incongruent-control and
incongruent-congruent) and physical size difference effect (i.e., close –

far) contrasts at p b 0.005 uncorrected for multiple comparisons
(Table 6; Fig. 6). There were no shared voxels within any region of DS
in these two conjunction analyses, even with a liberal statistical thresh-
old of p b 0.05 uncorrected for multiple comparisons. Of note, voxels
within left ACC were common to both our incongruent – congruent
and close – far contrasts, as were voxels within bilateral supramarginal
gyrus, supporting our contention that both types of interference were
equally cognitively effortful.

We next completed a disjunction analysis by applying an exclusive
mask of BOLD signal in our close – far contrast (p b 0.005 uncorrected
for multiple comparisons) to our incongruent – congruent contrast
(p b 0.005 uncorrected for multiple comparisons) to critically test
whether DS BOLD signal is significantly increased in our congruency
contrast relative to DS BOLD signal in our distance contrast (Table 7;
Fig. 7a). A significant activation originating in right thalamus (peak coor-
dinates 18,−7, 16; t(1, 90) = 3.08; cluster size= 51) that extended into
right dorsal caudate and a secondary activation in right dorsal putamen
(peak coordinates 27, 7, −1; t(1, 90) = 3.51) from a larger cluster
originating in the right postcentral gyrus (peak coordinates 66, −7, 13;
t(1, 90) = 4.76; cluster size = 1881) were seen. These results support
the contention that DS is implicated specifically when cognitive control
demands increase (i.e., incongruent – congruent) and not merely with
enhanced cognitive effort. We repeated this exclusive masking



Table 7
Disjunction analyses of our incongruent – congruent and close – far contrasts.

Contrast Anatomical Region Coordinates (x, y, z) t-stat Cluster size

incongruent – congruent masked with close – far R thalamus (ext. into dorsal caudate) 18, −7, 16 3.08 51
R postcentral gyrus 66, −7, 13 4.76 1881

(R dorsal putamen) 27, −7, 1 3.51 *
L superior temporal gyrus −60, −4, 1 4.62 568
L postcentral gyrus −33, −34, 46 4.35 427
L lingual gyrus −18, −58, −17 4.32 126

0, −70, 7 3.01 14
−15, −46, −5 2.96 25

R hippocampus 21, −25, −11 4.17 445
R frontal orbital cortex 18, 32, −17 4.16 39

30, 29, 10 3.46 20
L/R occipital pole 0, −91, 22 3.79 67
L insular cortex −39, 2, −17 3.72 18
L hippocampus −21, −19, −11 3.60 34
L juxtapositional lobule cortex −12, −1, 43 3.56 94
R dorsolateral prefrontal cortex 39, 44, 28 3.54 120
R inferior temporal gyrus 48, −22, −23 3.45 14

54, −43, −14 3.05 7
R thalamus 12, −19, 4 3.37 23
L temporal fusiform cortex −42, −28, −17 3.29 14
R posterior cingulate gyrus 3, −43, 4 3.13 13
L middle frontal gyrus −39, 38, 34 3.12 12
R supramarginal gyrus 48, −43, 43 3.10 6
L supramarginal gyrus −36, −49, 19 3.07 8
R temporal occipital fusiform cortex 24, −61, −14 3.02 37
L thalamus −18, −31, 4 2.98 10
R inferior frontal sulcus 48, 41, 4 2.97 5
R intracalcarine cortex 24, −61, 10 2.78 11

close – far masked with incongruent – congruent R inferior temporal gyrus 51, −58, −14 5.51 1357
L inferior temporal gyrus −45, −55, −8 5.45 778
R precentral gyrus 45, 8, 25 5.44 513
L precentral gyrus −45, 2, 28 5.42 280
R ventrolateral prefrontal cortex 48, 38, 16 4.79 212
L superior parietal lobule −27, −55, 49 4.24 360
L white matter (ext. into lingual gyrus) −3, −73, −23 4.21 85
L juxtapositional lobule −15, 2, 40 3.82 60
R orbitofrontal cortex 21, 47, −14 3.41 14
L middle frontal gyrus −45, 35, 19 3.20 44
L orbitofrontal cortex −45, 47, −14 2.92 5
R postcentral gyrus 6, −37, 61 2.88 7
L supramarginal gyrus −57, −28, 46 2.87 7
R superior temporal gyrus 60, −22, −2 2.85 9
R white matter 15, 26, 7 2.72 5

Contrasts and exclusivemaskswere thresholded at p b 0.005 uncorrected formultiple comparisons. Activations of cluster size N 5 that remained aftermasking are listed above. Coordinates
are listed in MNI space. L, left; R, right.
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procedure by masking out BOLD signal in our incongruent – congruent
contrast (p b 0.005 uncorrected for multiple comparisons) from our
close – far contrast (p b 0.005 uncorrected for multiple comparisons).
No preferential activity was seen in DS (Fig. 7b). To further bolster our
contention that DS mediates cognitive control and not cognitive effort
per se, we repeated our first disjunction analysis by applying an exclu-
sivemask of BOLD signal in our close – far contrast (p b 0.05uncorrected
for multiple comparisons) to our incongruent – congruent contrast
(p b 0.05 with FDR correction). Even with these much more stringent
statistical thresholds, activations in right dorsal caudate (peak coordi-
nates 18, −10, 19; t(1, 90) = 2.93; cluster size = 9), left dorsal caudate
(peak coordinates −18, −4, 19; t(1, 90) = 2.85; cluster size = 2), as
well as a secondary activation in right dorsal putamen (peak coordinates
27, −7, 1; t(1, 90) = 3.51) from a larger cluster originating in right
postcentral gyrus (peak coordinates 66, −7, 13; t(1, 90) = 4.76; cluster
size = 1351) were seen (Table 8; Fig. 7c). Taken together, the results
of our disjunction analyses provide clear evidence that DS ismore active
due to elevated cognitive control demands and not simply due to the
need for more cognitively effortful processing per se.

We followedwith ROI analyses to investigate DS using our incongru-
ent – congruent and close – far contrasts (Fig. 8). In the incongruent –
congruent contrast, we found significant mean signal change in right
DS (t= 3.07; p= 0.005). For our close – far contrast, no significant ac-
tivations were noted in the DS ROIs (left: t=1.38; p= 0.30; right: t=
1.63; p=0.20). Themagnitude ofmean signal change in right DS in our
incongruent – congruent and close – far contrasts did not differ signifi-
cantly (t = 0.38; p = 0.49) using a paired t-test. We also found signifi-
cant, common bilateral mean signal change in the ACC ROI for the
interference contrast (left: t = 3.71; p b 0.01 right: t = 2.98; p =
0.001) as well as left ACC in the close – far contrast (left: t = 2.36;
p b 0.05).

Finally, brain-behaviour correlations of BOLD signal with Stroop
interference (i.e., incongruent – congruent; incongruent – control) as
well as with close – far physical size difference scores were performed
at p b 0.005 uncorrected for multiple comparisons (Table 9). We
found that dorsal caudate BOLD signal was negatively correlated with
interference scores in both our Stroop interference contrasts
(i.e., incongruent - congruent; incongruent – control), demonstrating
its role in cognitive control (Fig. 9). We found no correlation between
DS BOLD signal and difference scores for our close – far contrast, even
at p b 0.05 uncorrected for multiple comparisons. We also found no cor-
relation between ACC BOLD signal and RTs in any of our contrasts. Left
supramarginal gyrus BOLD signal was positively correlated with
interference scores for both our interference contrasts.



Fig. 7. Axial slices showing significant activations for disjunction analyses. Column a) shows significant voxels in our incongruent – congruent contrast (p b 0.005 uncorrected formultiple
comparisons) after masking out activations in our close – far contrast (p b 0.005 uncorrected for multiple comparisons). Column b) shows significant voxels in our close – far contrast
(p b 0.005 uncorrected for multiple comparisons) after masking out activations in our incongruent – congruent contrast (p b 0.005 uncorrected for multiple comparisons). Column
c) shows significant voxels in our incongruent – congruent contrast (p b 0.05with FDR correction) aftermasking out activations in our close– far contrast (p b 0.05 uncorrected formultiple
comparisons). This more stringent disjunction analysis was performed to further bolster our contention that DS mediates cognitive control and not cognitive effort per se. Significant
activations in DS for each disjunction analysis are circled in green.
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Discussion

Using a number Stroop task with simultaneous fMRI, we examined
whether DSmediates cognitive control processes specifically or cognitive
effort generally. The physical size difference betweennumber pairs on the
relevant dimension and the numerical magnitude difference between
number pairs on the irrelevant dimension were fully crossed with con-
gruency, such that these effects were entirely orthogonal. In this way,
wewere able to examine the effect of congruency andphysical size differ-
ence effects on RTs, error rates, and fMRI BOLD signalwithin the same data
set. We hypothesized that our congruencymanipulation (incongruent vs.
congruent or control) stresses cognitive control processes as well as in-
creases cognitive effort demands. In contrast, the physical distance effect
(i.e., close 15 point font differences vs. far 45 point font differences) en-
hances the cognitive effort required to select the larger number of the
pair, but does not require additional cognitive control.

Participants took longer to respond and had higher error rates
during incongruent relative to congruent and control trials, and for
close relative to far physical size difference trials. Participants responded
faster during congruent trials relative to control trials. Thesefindings are
consistent with a very large literature (Dyer, 1973; Jensen and Rohwer,
1966; Macleod, 1991; MacLeod and MacDonald, 2000; Holloway and
Ansari, 2010; Kaufmann et al., 2005). Congruency, physical size, and
numerical magnitude difference variables did not interact.

Analogous to our behavioural analyses,we investigated the effects of
congruency (incongruent vs. congruent vs. control) and physical size
differences (close vs. far) on BOLD signal. We found that DS activity
was modulated by our congruency variable. Pairwise comparisons
revealed greater DS activation for incongruent trials—during which
conflicting information on the irrelevant dimension needed to be
suppressed—compared to the congruent case. At a slightly more liberal
criterion (p b 0.005 uncorrected for multiple comparisons), these same
DS regions were also significantly more active for incongruent com-
pared to control trials. No striatal regions were preferentially more
active for control or congruent trials relative to incongruent trials. Of
greater significance given our aims, preferential DS activation did not
occur for close relative to far physical size difference comparisons or
the reverse contrast. Even using a very liberal criterion of p b 0.05,



Table 8
Additional stringent disjunction analysis of our incongruent – congruentmaskedwith our
close – far contrast.

Contrast Anatomical Region Coordinates
(x, y, z)

t-stat Cluster
size

incongruent –
congruent
masked with
close – far

R dorsal caudate 18, −10, 19 2.93 9
L dorsal caudate −18, −4, 19 2.85 2
R postcentral gyrus 66, −7, 13 4.76 1351
(R dorsal putamen) (27, −7, 1) (3.51) *

33, −28, 40 3.91 11
54, −22, 58 2.72 1

L lingual gyrus −18, −58, −17 4.32 81
−15, −46, −5 2.96 24

L postcentral gyrus −42, −25, 40 4.24 91
−36, −28, 58 3.01 13

R hippocampus 21, −25, −11 4.17 421
R orbitofrontal cortex 18, 32, −17 4.16 11

30, 38, −17 3.43 5
L central opercular cortex −57, −1, 4 3.97 507
L/R cuneal cortex 0, −88, 25 3.77 43
L insular cortex −39, 2, −17 3.72 17
L posterior cingulate
gyrus

−15, −25, 34 3.68 120

L hippocampus −21, −19, −11 3.60 35
R inferior temporal gyrus 48, −22, −23 3.45 14

54, −40, −14 2.82 2
R dorsolateral prefrontal
cortex

27, 47, 37 3.43 75

R posterior cingulate
gyrus

15, −31, 37 3.42 134

6, −43, 4 2.94 4
3, −34, 28 2.82 4

R thalamus 12, −16, 4 3.33 19
21, −31, 7 2.78 1

L temporal fusiform
cortex

−42, −28, −17 3.29 14

L anterior cingulate gyrus −9, −1, 40 3.27 64
R inferior frontal gyrus 33, 29, 10 3.24 2
R supramarginal gyrus 69, −34, 31 3.22 2
L middle frontal gyrus −39, 38, 34 3.12 12
L juxtapositional lobule
cortex

−15, 5, 49 3.11 4

L supramarginal gyrus −36, −49, 19 3.07 8
−51, −37, 43 2.82 2
−51, −31, 34 2.75 3

L/R lingual gyrus 0, −70, 7 3.01 9
L thalamus −18, −31, 4 2.98 10

−18, −22, 16 2.64 1
R temporal fusiform
cortex

39, −13, −23 2.85 3

R precuneus cortex 12, −79, 43 2.84 4
3, −49, 61 2.67 2

18, −67, 43 2.64 1
L subcallosal cortex −12, 17, −11 2.79 3
R intracalcarine cortex 24, −61, 10 2.78 6
R lingual gyrus 6, −73, −8 2.77 3

12, −88, −11 2.73 1
R temporal occipital
fusiform cortex

24, −61, −11 2.72 1

R precentral gyrus 21, −25, 58 2.71 1
R occipital fusiform gyrus 24, −67, −14 2.67 3
L lateral occipital cortex −57, −67, −2 2.67 1

Incongruent – congruent contrast was thresholded at p b 0.05 with FDR correction and an
exclusivemask of our close – far contrast at p b 0.05 uncorrected formultiple comparisons
was applied. Activations that remained after masking are listed above. Coordinates are
listed in MNI space. L, left; R, right.
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uncorrected for multiple comparisons at the whole-brain level, no DS
peaks of 10 contiguous voxels or greater were detected for our close –

far contrast.
In contrast, ACC was significant in our main effect analyses of both

congruency and physical size differences, as well as during subsequent
pairwise comparisons of incongruent – congruent and close – far trials.
The supramarginal gyrus was significant for the main effect of physical
size difference and pairwise comparisons of incongruent – congruent
and close – far contrasts. These activations confirm that our aim ofmod-
ulating cognitive effort using both congruency and physical size
difference manipulations was achieved.

Conjunction analyses – completed using a slightly more liberal
criterion (p b 0.005 uncorrected for multiple comparisons) – between
our congruency interference (i.e., incongruent – congruent, incongru-
ent – control) contrasts yielded shared voxels within DS. In contrast,
our congruency-related interference and physical size (i.e., close-far)
conjunction analyses revealed no shared voxels in DS. However, left
ACC activation was shared between our incongruent – congruent and
close – far contrasts, and bilateral supramarginal gyrus activation was
common for incongruent – congruent or incongruent – control and
our close – far contrast. This supports the claim that we succeeded in
creating conditions that were equally effortful using congruency and
physical size difference manipulations.

Disjunction analysis – performed bymasking out all voxels arising in
our close – far contrast (p b 0.005 uncorrected for multiple compari-
sons) fromour incongruent– congruent contrast (p b 0.005 uncorrected
for multiple comparisons) – yielded significant voxels in right dorsal
caudate and a secondary activation in right dorsal putamen. Repeating
this analysis with much more stringent thresholds (incongruent –

congruent contrast at p b 0.05 with FDR correction masked with
close – far contrast at p b 0.05 uncorrected for multiple comparisons)
yielded significant bilateral dorsal caudate activations as well as a
secondary activation in right dorsal putamen. These results provide
direct evidence that DS is significantly more active for interference con-
trasts related to elevated cognitive control demands than for interfer-
ence occurring due to closer physical size comparisons. Disjunction
analysis, completed by masking out all voxels arising in our incongru-
ent – congruent contrast (p b 0.005 uncorrected for multiple compari-
sons) from our close – far contrast (p b 0.005 uncorrected for multiple
comparisons) yielded no significant voxels in DS, lending further
credence to our contention that DS mediates cognitive control and not
cognitive effort per se.

ROI analyses yielded results consistent with our whole-brain
analyses. Significant mean signal change was found in right DS in our
incongruent – congruent contrast, but no mean signal change was
found within our DS ROIs for the close – far contrast. The difference in
themagnitude of signal change in right DS in our incongruent – congru-
ent and close– far contrasts did not reach significance; however, despite
this finding, our disjunction analyses surveying the whole brain – and
reported above – did uncover preferentially more bilateral DS activity
in the congruency relative to distance contrasts. No voxels in DS were
significantly more active for the physical size distance effect compared
to the congruency effect. As expected, and a demonstration of our suc-
cess in matching the effort required by our congruency and distance
manipulations, significant mean signal changes were seen in our ACC
ROIs for both interference and close – far contrasts.

Finally, brain-behaviour investigations – completed using a slightly
more liberal criterion (p b 0.005 uncorrected for multiple compari-
sons) – revealed that DS BOLD signal was negatively correlated with
Stroop interference scores, but close – far physical difference scores
did not correlate with DS BOLD signal in any manner. That is, higher
BOLD signal in DS was associated with less interference from the
distracting dimension, as would be expected for a brain region that is
implicated in cognitive control functions. ACC BOLD signal was not
correlated with RTs in any of our contrasts though left supramarginal
gyrus BOLD was positively correlated with interference and difference
scores in both our interference and distance contrasts, respectively.
Taken together, we conclude that DSplays a role specifically in cognitive
control and not in cognitively effortful processing per se.

DS in cognitive control or cognitive effort

Preferential DS activation for incongruent relative to congruent and
control Stroop trials has been noted previously (Ali et al., 2010; Ansari



Table 9
Positive and negative correlations between BOLD signals and RTs in our interference and close – far contrasts.

Correlation Type Anatomical region Coordinates (x, y, z) t-stat Cluster size

incongruent – congruent positive R insular cortex 36, 2, 1 4.46 11
L supramarginal gyrus −57, −43, 49 4.02 5
R inferior frontal gyrus 48, 23, 4 3.89 23

57, 17, 10 3.74 6
R middle temporal gyrus 60, −43, 13 3.35 5
R dorsolateral prefrontal cortex 39, 50, 31 3.33 5

negative L dorsal caudate −18, −7, 22 3.85 7
R thalamus 6, −4, 19 6.44 33

−6, −25, 19 4.16 10
L/R precuneus 0, −64, 31 5.04 43
L middle temporal gyrus −57, −13, −17 4.36 14
R amygdala 27, −13, −11 4.29 25
R thalamus 18, −16, 13 4.18 5
R temporal pole 39, 14, −26 4.15 17
L inferior temporal gyrus −45, −16, −26 3.98 5
L frontal orbital cortex −39, 32, −14 3.35 8

incongruent – control positive R dorsolateral prefrontal cortex 39, 50, 31 3.95 6
L superior parietal lobule −39, −40, 58 3.95 16

−27, −58, 52 3.52 24
R inferior frontal gyrus 60, 23, 10 3.94 9
L frontal orbital cortex −51, 26, −5 3.64 9
L supramarginal gyrus −54, −43, 49 3.57 7
L middle frontal gyrus −42, 8, 40 3.51 18
R lateral occipital cortex 27, −85, 1 3.20 5

negative R dorsal caudate 18, −13, 25 3.37 10
R amygdala 24, −13, −11 4.75 21
L/R white matter (ext. to thalamus) 0, −28, 13 4.24 14

close – far positive L precuneus −12, −43, 46 4.41 18
L lateral occipital cortex −30, −85, 25 4.34 102
L precentral gyrus −39, −7, 34 4.15 8
L central opercular cortex −60, −13, 13 3.50 6
L superior parietal cortex −27, −58, 58 3.38 7

negative L dorsolateral prefrontal cortex −15, 47, 31 3.72 13

All t values listed abovewere found at p b 0.005 uncorrected formultiple comparisons. Activationswith cluster size b 5 are not listed. Coordinates are listed inMNI space. ext, extending; L,
left; R, right.
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et al., 2006; Tang et al., 2009; Peterson et al., 1999, 2002; Pardo et al.,
1990). Similarly, DS is preferentially active in shifting from one goal to
another (Grahn et al., 2008; Hazy et al., 2006; Vakil et al., 2004), in re-
solving incongruent stimulus-stimulus associations that conflict across
consecutive trials (MacDonald et al., 2011), as well as in switching
among decision strategies (Benke et al., 2003: Cameron et al., 2010;
Fig. 8. Mean signal change for regions of interest in our incongruent – congruent and
close – far contrasts. A single asterisk denotes significant mean signal change at p b 0.05.
Double asterisks denote significant mean signal change at p b 0.01. Triple asterisks denote
mean signal change at p b 0.001. ACC, anterior cingulate cortex; Cong, congruent; DS, dor-
sal striatum; Incong, incongruent; L, left; R, right.
Ell et al., 2006; Grahn et al., 2008; Leber et al., 2008; Yehene et al.,
2008). These findings, and ours reported here, can be interpreted as ev-
idence for DS’ role in cognitive control processes because correct
responding requires suppressing competing responses, shifting atten-
tion from salient but irrelevant stimulus dimensions to target dimen-
sions, or overcoming previously established associations. Keeping in
mind that cognitive effort has been defined as the proportion of en-
gaged, limited-capacity central processing (Russo and Dosher, 1983),
the number of elementary processes enacted (Bettman et al., 1990), or
the duration over which cognitive resources are expended
(Christensen-Szalanski, 1980), these condition that stress cognitive
control mechanisms are also more cognitively effortful than their
comparison conditions. This introduces an alternative explanation for
increased DS BOLD signal in these conditions.

To differentiate cognitive control from cognitive effortwe also inves-
tigated the effect of physical size differences between number pairs
using the same data set. In line with a number of similar studies, RTs
were longer for close relative to far physical size differences between
number pairs, which is consistent with the view that these trials are
more cognitively effortful (Cohen Kadosh et al., 2005; Kaufmann et al.,
2005, 2006; MacDonald et al., 2014; Pinel et al., 2001). However, vary-
ing the physical size differences between number pairs does not alter
cognitive control demands. That is, close and far trials do not differ in
their requirement to shift attention from one stimulus dimension to an-
other, or override more automatic or habitual response tendencies
(Botvinick et al., 2001; Cools and D’Esposito, 2011; Liu et al., 2004;
MacDonald et al., 2000). DS activity did not correlate with the behav-
ioural slow-down in responding for number pairs that had smaller
physical size differences compared to those with larger differences,
even when a liberal statistical threshold was employed. We interpret
these findings as support for the notion that DS does not merely medi-
ate cognitive effort, but rather is specifically engaged in decisions that



Fig. 9. Axial slices showing significant activations for negative BOLD-Stroop Interference
correlations. Significant activations (p b 0.005 uncorrected for multiple comparisons) in
DS are circled in green.
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require greater deliberation or cognitive control. The fact that DS BOLD
signalwas negatively correlatedwith themagnitude of the Stroop inter-
ference effect further suggests its role in cognitive control, though this
was only significant at p b 0.005 uncorrected for multiple comparisons.
When DS BOLD signal was reduced, the irrelevant and distracting di-
mension interfered more with responding. Conversely, When DS
BOLD signal was increased, responding was more focused and less sus-
ceptible to distraction.

Weaknesses and alternative interpretations of the current study addressed

An inherent difficulty in our approach is that to refute the possibility
that DSmediates cognitive effort requires accepting a null hypothesis in
our main analyses. In a well-designed study, rejecting the null hypothe-
sis warrants confidence that differences between conditions arose due
to manipulation of the experimental variable. Conclusions drawn from
failing to reject the null hypothesis are fraught with greater difficulty.
Statistical equivalence between conditions could arise due to unsuc-
cessful implementation of the critical experimental manipulation or
due to insufficient power to detect true differences between the
contrasted conditions. To mitigate this criticism of our main analyses,
however, we found significant differences in the DS BOLD response for
the incongruent - congruent contrast relative to the close – far contrast
using exclusive masking. That is, DS activations in the former contrast
were unique and significantly greater than for the latter, and conse-
quently our conclusions about differential DS involvement in congruen-
cy versus distance effects do not rest solely on a null result. It should be
noted that the pairwise comparisons of beta values in our caudate ROI
between congruency and distance contrasts did not, however, reach
significance. Finally, the converse disjunction analysis – completed
using more lenient statistical thresholds – revealed no significant DS
BOLD signal for the close – far contrast relative to the incongruent –
control comparison.

Additional considerations further mollify concerns about interpreting
the null effect in the main close – far distance analyses. A number of
findings suggest that we succeeded in critically testing DS’ role in cogni-
tive effort. Though we failed to find differential DS BOLD signal between
number pairs with smaller versus larger physical size differences, the
predicted behavioural differences arose and the pattern of cortical activa-
tions associated with variation in physical size differences in the current
study was coherent with the existing literature (e.g., ACC, supramarginal
gyrus extending to the intraparietal sulcus, left superior parietal lobule,
bilateral precuneus, left posterior cingulate gyrus; Ansari et al., 2005;
Cohen Kadosh et al., 2005; Kaufmann et al., 2005, 2006; MacDonald
et al., 2014; Pinel et al., 2001, 2004). Further, the behavioural interference
effects from our congruencymanipulation (i.e., incongruent – control, in-
congruent – congruent) and our physical size difference effect (i.e., close
minus far physical size difference number pairs) were not significantly
different at p b 0.05. The interference effects for incongruent – control
was 53.59 ± 8.48 (ms ± SEM) and incongruent – congruent was
68.57± 8.04 (ms± SEM). These valueswere comparable to the interfer-
ence achieved for close – far physical size difference trials, 67.98 ± 16.80
(ms±SEM). This is important because it suggests that at the behavioural
level, our congruency and size manipulations were equally robust, and
the cognitive effort required was comparable for both experimental
conditions relative to their respective baseline conditions. In line with
this finding, the activations seen at the border of the juxtapositional
lobule cortex and ACC were present during pairwise comparisons and
conjunction analyses of interference and physical size contrasts, in line
with ACC’s role in attentional and effortful processing (Shenhav et al.,
2013; Ansari et al., 2006; Bench et al., 1993; Botvinick et al., 2001;
Carter et al., 1995; but see Kaufmann et al., 2005; Tang et al., 2009 for
notable negative examples). These ACC activations are also known to
vary both in the location of their local maxima and cluster sizes between
studies (Egner and Hirsch, 2005). Common activation for interference
andphysical size distance effects in supramarginal gyruswas also expect-
ed and previously noted, given this region’s role in stimulus-level atten-
tion and number comparison and processing (Kaufmann et al., 2005).
In summary, this pattern of results suggests that we properly enacted
our distance manipulation, and equated our Stroop and distance effects
in terms of potency and required effort based on both behavioural and
neural data. Our findings are therefore quite compelling and credible in
refuting claims that DS merely mediates cognitive effort (Boehler et al.,
2011; Krebs et al., 2012; Schmidt et al., 2012), converging with a larger
literature using other methodologies that bear brief interpretation
respecting DS and cognitive effort below.

The behavioural indices of increased cognitive effort are increased
RTs and error rates studied in both humans (e.g., Moyer and Landauer,
1967) and animals (Dehaene et al., 1998). Our finding that preferential
DS activity does not result for discriminations ofmore similar relative to
more dissimilar stimuli has been found by others in both adults (Cohen
Kadosh et al., 2005;MacDonald et al., 2014; Pinel et al., 2001, 2004) and
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children (Kaufmann et al., 2006). Also in line with our findings,
Zamarian et al. (2006) demonstrated that PD patientswithout dementia
perform as well as healthy controls during tasks that involve working
with analog magnitude scales (1–100), verbal counting, or single-digit
magnitude comparisons—all tasks that vary cognitive effort leaving cog-
nitive control processes invariant. Further, in MacDonald et al. (2014),
PD patients and healthy controls were instructed to select the numeri-
cally larger or smaller written integer from a pair (e.g., one vs. eight)
based on a simultaneously presented cue. All participants revealed a
symbolic distance effect, whereby responses to number pairs that
were closer (e.g., one vs. two) relative to farther (e.g., one vs. six) in nu-
merical valuewere slower andmore error prone. Of crucial importance,
the symbolic distance effect for PD patients did not differ from that of
healthy age-matched controls. Further, the symbolic distance effect
was not affected by dopaminergic medication status (OFF vs. ON) of
PD patients. This is inconsistentwith a role for DS inmediating these ef-
fects, given that off medication in PD, DS function is compromised,
whereas it is improved with dopamine replacement (Cools, 2006a;
Shook et al., 2005; Hood et al., 2007; MacDonald et al., 2011). In similar
fashion, numerous single-case studies of patients with basal ganglia le-
sions show no deficits in their ability to judgemagnitude in the absence
of conflict (Benke et al., 2003; Dehaene and Cohen, 1997; Delazer et al.,
2004; Hittmair-Delazer et al., 1994). Taken together, converging evi-
dence suggests that DS does not mediate cognitively effortful judgment
or decisions per se.

DS in decision-making

Our findings cohere with mounting evidence from our lab (Hiebert
et al., 2014a, 2014b; Vo et al., 2014), as well as a larger literature
(e.g., Cools, 2006b; Cools et al., 2010; Grahn et al., 2008; Hughes et al.,
2013). DS dysfunction in both humans and non-human primates results
in deficits in shifting attention between stimuli, especially away from
more salient ones (Benke et al., 2003; Cools et al., 2003, 2010; Thoma
et al., 2008), flexibly altering decision-making strategies or response
sets (Benke et al., 2003: Cameron et al., 2010; Ell et al., 2006; Grahn
et al., 2008; Leber et al., 2008; Yehene et al., 2008), suppressing more
automatic responses (Benke et al., 2003; Cameron et al., 2010;
MacDonald et al., 2011; White, 2009), and updating goals (Grahn
et al., 2008; Hazy et al., 2006; Vakil et al., 2004). In Thoma et al.
(2008), patients with basal ganglia lesions showed increased RTs and
error rates during the classical colour-word Stroop task. In PD patients,
shifting attention to more salient stimuli is accomplished more easily
(Cools et al., 2010; MacDonald et al., 2011), whereas shifting attention
to less salient stimuli yields more impairment compared to controls
(Cameron et al., 2010; Cools et al., 2006b, 2010; Hood et al., 2007;
MacDonald et al., 2011). In healthy volunteers, DS activation occurs
when participants are required to suppress competingmotor responses,
as in the incongruent condition of the Stroop task (Ali et al., 2010; Leung
et al., 2000; Pardo et al., 1990; Pinel et al., 2004; Peterson et al., 1999,
2002). Taken together, these results suggest that DS is implicated in
decision making when deliberation and cognitive control are required.

Conclusion

We used a simple number Stroop task to address a pervasive
confound in the study of cognitive abilities mediated by DS. Cognitive
effort usually increases proportionally with cognitive control demands.
The number Stroop task allowed us to independentlymanipulate cogni-
tive control and cognitive effort to investigate DS BOLD signal in relation
to each of these separate cognitive effects. We found that increasing
cognitive control requirements by introducing distracting, conflicting
information (i.e., the incongruent case) increased participant RTs,
error rates, and was associated with increased DS BOLD signal. Further,
the magnitude of the DS BOLD signal was inversely correlated with the
size of the Stroop effect, supporting its role in cognitive control.
Enhancing cognitive effort demands by decreasing the difference in
physical size between number pairs increased participant RTs, but was
not associated with preferential DS activation, even using liberal statis-
tical criteria. Our results support claims that DS specifically mediates
cognitive control, and not cognitive effort per se, in decision-making.
Increasingly, cognitive functions are ascribed to the striatum. Under-
standing these specific cognitive functions is important in anticipating
cognitive and behavioural deficits of patients with neurological and
psychiatric illnesses that implicate the striatum.
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